Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present a comparison of the measured cosmic ray (CR) muon fluxes from two identical portable low‐cost detectors at different geolocations and their sensitivity to space weather events in real time. The first detector is installed at Mount Wilson Observatory, CA, USA (geomagnetic cutoff rigidity Rc ∼ 4.88 GV), and the second detector is running on the downtown campus of Georgia State University in Atlanta, GA, USA (Rc ∼ 3.65 GV). The variation of the detected muon fluxes is compared to the changes in the interplanetary solar wind parameters at the L1 Lagrange point and geomagnetic indexes. In particular, we have investigated the muon flux behavior during three major interplanetary shock events and geomagnetic disturbances that occurred during July and August of 2022. To validate the interpretation of the measured muon signals, we compare the muon fluxes to the measurement from the Oulu neutron monitor (NM, Rc ∼ 0.8 GV). The results of this analysis show that the muon detector installed at Mount Wilson Observatory demonstrates a stronger correlation with a high‐latitude NM. Both detectors typically observe a muon flux decrease during the arrival of interplanetary shocks and geomagnetic storms. Interestingly, the decrease could be observed several hours before the onset of the first considered interplanetary shocks at L1 at 2022‐07‐23 02:28:00 UT driven by the high‐speed Coronal Mass Ejection and related geomagnetic storm at 2022‐07‐23 03:59:00 UT. This effort represents an initial step toward establishing a global network of portable low‐cost CR muon detectors for monitoring the sensitivity of muon flux changes to space and terrestrial weather parameters.more » « less
- 
            The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark–gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            The ALICE Collaboration reports measurements of the large relative transverse momentum ( ) component of jet substructure in and Pb-Pb collisions at center-of-mass energy per nucleon pair . Enhancement in the yield of such large- emissions in head-on Pb-Pb collisions is predicted to arise from partonic scattering with quasiparticles of the quark-gluon plasma. The analysis utilizes charged-particle jets reconstructed by the anti- algorithm with resolution parameter in the transverse-momentum interval . The soft drop and dynamical grooming algorithms are used to identify high transverse momentum splittings in the jet shower. Comparison of measurements in Pb-Pb and collisions shows medium-induced narrowing, corresponding to yield suppression of high- splittings, in contrast to the expectation of yield enhancement due to quasiparticle scattering. The measurements are compared to theoretical model calculations incorporating jet modification due to jet-medium interactions (“jet quenching”), both with and without quasiparticle scattering effects. These measurements provide new insight into the underlying mechanisms and theoretical modeling of jet quenching.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract This paper presents a study of the inclusive forward J/ψyield as a function of forward charged-particle multiplicity in pp collisions at$$ \sqrt{s} $$ = 13 TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relativeJ/ψyields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range |η|<1. The J/ψmesons are reconstructed via their decay intoμ+μ−pairs in the forward rapidity region (2.5< y <4). The relative multiplicity is estimated in the forward pseudorapidity range which overlaps with the J/ψrapidity region. The results show a steeper-than-linear increase of the J/ψyields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract Event-by-event fluctuations of the event-wise mean transverse momentum,$$\langle p_{\textrm{T}}\rangle $$ , of charged particles produced in proton–proton (pp) collisions at$$\sqrt{s}$$ = 5.02 TeV, Xe–Xe collisions at$$\sqrt{s_{\textrm{NN}}}$$ = 5.44 TeV, and Pb–Pb collisions at$$\sqrt{s_{\textrm{NN}}}$$ = 5.02 TeV are studied using the ALICE detector based on the integral correlator$$\langle \!\langle \Delta p_\textrm{T}\Delta p_\textrm{T}\rangle \!\rangle $$ . The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe–Xe and Pb–Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe–Xe and Pb–Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity,$$S_0$$ , of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            A<sc>bstract</sc> We report on the measurement of inclusive, non-prompt, and prompt J/ψ-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of 13 TeV. The correlations are studied at midrapidity (|y| <0.9) in the transverse momentum rangespT<40 GeV/cfor the J/ψand 0.15< pT<10 GeV/cand |η|<0.9 for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities ofLint= 34 nb−1andLint= 6.9 pb−1, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy ofE= 4 and 9 GeV in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities ofLint= 0.9 pb−1andLint= 8.4 pb−1, respectively. The azimuthally integrated near and away side yields of associated charged hadrons per J/ψtrigger are presented as a function of the J/ψand associated hadron transverse momentum. The measurements are discussed in comparison to PYTHIA calculations.more » « lessFree, publicly-accessible full text available July 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available